Smoke issue - what to do?

as a 65-cm-long scale-model toy for the Chinese Emperor that was unable to carry a driver or a passenger.72122 It is not known if Verbiest's model was ever built.22 Cugnot's 1771 fardier ? vapeur, as preserved at the Musée de

Smoke issue - what to do? best oil for Lancia

Car - about history

The first working steam-powered vehicle was designed?and most likely built?by Ferdinand Verbiest, a Flemish member of a Jesuit mission in China around 1672. It was a 65-cm-long scale-model toy for the Chinese Emperor that was unable to carry a driver or a passenger.72122 It is not known if Verbiest's model was ever built.22


Cugnot's 1771 fardier ? vapeur, as preserved at the Musée des Arts et Métiers, Paris
Nicolas-Joseph Cugnot is widely credited with building the first full-scale, self-propelled mechanical vehicle or car in about 1769; he created a steam-powered tricycle.23 He also constructed two steam tractors for the French Army, one of which is preserved in the French National Conservatory of Arts and Crafts.24 His inventions were, however, handicapped by problems with water supply and maintaining steam pressure.24 In 1801, Richard Trevithick built and demonstrated his Puffing Devil road locomotive, believed by many to be the first demonstration of a steam-powered road vehicle. It was unable to maintain sufficient steam pressure for long periods, and was of little practical use.

The development of external combustion engines is detailed as part of the history of the car, but often treated separately from the development of true cars. A variety of steam-powered road vehicles were used during the first part of the 19th century, including steam cars, steam buses, phaetons, and steam rollers. Sentiment against them led to the Locomotive Acts of 1865.

Źródło: https://en.wikipedia.org/wiki/Car#History


Worth to know - Public costs

The external costs of automobiles, as similarly other economic externalities, are the measurable costs for other parties except the car proprietor, such costs not being taken into account when the proprietor opts to drive their car. According to the Harvard University,11 the main externalities of driving are local and global pollution, oil dependence, traffic congestion and traffic accidents; while according to a meta-study conducted by the Delft University12 these externalities are congestion and scarcity costs, accident costs, air pollution costs, noise costs, climate change costs, costs for nature and landscape, costs for water pollution, costs for soil pollution and costs of energy dependency. The existence of the car allows on-demand travel, given, that the necessary infrastructure is in place. This infrastructure represents a monetary cost, but also cost in terms of common assets that are difficult to represent monetarily, such as land use and air pollution.



Źródło: https://en.wikipedia.org/wiki/Economics_of_car_use


Starting at TDC

2-stroke engines
Main article: 2-stroke engine

The defining characteristic of this kind of engine is that each piston completes a cycle every crankshaft revolution. The 4 processes of intake, compression, power and exhaust take place in only 2 strokes so that it is not possible to dedicate a stroke exclusively for each of them. Starting at TDC the cycle consist of:

Power: While the piston is descending the combustion gases perform work on it?as in a 4-stroke engine?. The same thermodynamic considerations about the expansion apply.
Scavenging: Around 75° of crankshaft rotation before BDC the exhaust valve or port opens, and blowdown occurs. Shortly thereafter the intake valve or transfer port opens. The incoming charge displaces the remaining combustion gases to the exhaust system and a part of the charge may enter the exhaust system as well. The piston reaches BDC and reverses direction. After the piston has traveled a short distance upwards into the cylinder the exhaust valve or port closes; shortly the intake valve or transfer port closes as well.
Compression: With both intake and exhaust closed the piston continues moving upwards compressing the charge and performing a work on it. As in the case of a 4-stroke engine, ignition starts just before the piston reaches TDC and the same consideration on the thermodynamics of the compression on the charge.

While a 4-stroke engine uses the piston as a positive displacement pump to accomplish scavenging taking 2 of the 4 strokes, a 2-stroke engine uses the last part of the power stroke and the first part of the compression stroke for combined intake and exhaust. The work required to displace the charge and exhaust gases comes from either the crankcase or a separate blower. For scavenging, expulsion of burned gas and entry of fresh mix, two main approaches are described: Loop scavenging, and Uniflow scavenging, SAE news published in the 2010s that 'Loop Scavenging' is better under any circumstance than Uniflow Scavenging.6

Źródło: https://en.wikipedia.org/wiki/Internal_combustion_engine



© 2019 http://przedszkole3.tychy.pl/